Latent class and finite mixture models for multilevel data sets.

نویسنده

  • Jeroen K Vermunt
چکیده

An extension of latent class (LC) and finite mixture models is described for the analysis of hierarchical data sets. As is typical in multilevel analysis, the dependence between lower-level units within higher-level units is dealt with by assuming that certain model parameters differ randomly across higher-level observations. One of the special cases is an LC model in which group-level differences in the logit of belonging to a particular LC are captured with continuous random effects. Other variants are obtained by including random effects in the model for the response variables rather than for the LCs. The variant that receives most attention in this article is an LC model with discrete random effects: higher-level units are clustered based on the likelihood of their members belonging to the various LCs. This yields a model with mixture distributions at two levels, namely at the group and the subject level. This model is illustrated with three rather different empirical examples. The appendix describes an adapted version of the expectation-maximization algorithm that can be used for maximum likelihood estimation, as well as providing setups for estimating the multilevel LC model with generally available software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Students Reading Motivation: A Multilevel Mixture Factor Analysis

Latent variable modeling is a commonly used data analysis tool in social sciences and other applied fields. The most popular latent variable models are factor analysis (FA) and latent class analysis (LCA). FA assumes that there is one or more continuous latent variables – called factors – determining the responses on a set of observed variables, while LCA assumes that there is an underlying cat...

متن کامل

Mixture Modeling: A Useful Analytical Approach for Drug Use Studies

The analytic methods often used in drug use studies, such as ANOVA, multiple regression, logistic regression, multilevel models, and structural equation modeling (SEM) including path analysis, factor analysis, and latent growth curve model, are variable-centered approaches. Those approaches assume that the study sample arises from a homogeneous population; and focus on relations among variables...

متن کامل

Nonlinear Change Models in Heterogeneous Populations When Class Membership is Unknown: The Latent Classification Differential Change Model

When unobserved heterogeneity exists in populations where the phenomenon of interest is governed by a functional form of change linear in its parameters, the growth mixture model (GMM) is extremely useful for modeling change conditional on latent class (Muthén, 2001a; Muthén, 2001b; Muthén, 2002). However, when the functional form of interest is nonlinear in its parameters, the GMM is not very ...

متن کامل

Multilevel Mixture Factor Models.

Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs) have in common that-as in multilevel regression ana...

متن کامل

Title of the ESTIMATION AND MODEL SELECTION FOR Dissertation FINITE MIXTURES OF LATENT INTERACTION MODELS

Title of the ESTIMATION AND MODEL SELECTION FOR Dissertation FINITE MIXTURES OF LATENT INTERACTION MODELS Jui-Chen Hsu, Doctor of Philosophy, 2011 Directed by Professor Gregory R. Hancock, Department of Measurement, Statistics and Evaluation Professor Jeffrey R. Harring, Department of Measurement, Statistics and Evaluation Latent interaction models and mixture models have received considerable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical methods in medical research

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2008